Schedule

πŸ“”: Notes πŸ–₯️: Slides πŸ—’οΈ: Worksheet ✍️: Homework πŸ“–: Solutions

Date Module Topics Material Assessment
Jan 21
Lecture 1
Preliminaries
Numbers and sets; Relations and functions; Summation notation; Necessary and sufficient conditions πŸ–₯️ πŸ—’οΈ πŸ—’οΈ ✍️ πŸ“–
Jan 28
Lecture 2
Linear Algebra
πŸ“”
Matrices: Addition, Subtraction, and Scalar Multiplication; Matrix Multiplication; Vectors; Identity and Null Matrices; Transpose and Inverse of a Matrix πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Feb 04
Lecture 3
Conditions for Nonsingularity of a Matrix; Determinant of a Matrix πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 1
Feb 11
Lecture 4
Finding the Inverse of a Matrix; Cramer’s Rule; Applications πŸ–₯️ πŸ—’οΈ πŸ—’οΈ ✍️ πŸ“–
Feb 18
Lecture 5
Calculus
πŸ“” πŸ“”
Limit Definition of a Derivative; Limits; Continuity; Rules of Differentiation πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 2
Feb 25
Lecture 6
Exponential and Log Functions; Partial Derivatives; Total Differential and Derivative πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Mar 04
Lecture 7
Implicit Function Theorem; Integration πŸ–₯️ ✍️ πŸ“– Quiz 3
Mar 11 Review Class
Mar 18 Midterm Exam
Mar 25
Lecture 8
Optimization
πŸ“”
Unconstrained Single-Variable Optimization; Concave and Convex Functions πŸ–₯️ πŸ—’οΈ ✍️ πŸ“–
Spring Recess
Apr 08
Lecture 9
Optimization Multivariable Optimization πŸ–₯️ ✍️ πŸ“–
Apr 15
Lecture 10
Constrained Optimization πŸ–₯️ πŸ—’οΈ ✍️ πŸ“– Quiz 4
Apr 22
Lecture 11
Envelope Theorem; Quasiconcavity; Convex sets; Homogenous Functions πŸ–₯️ ✍️ πŸ“–
Apr 29
Lecture 12
Add. Topics TBA Quiz 5
May 06 Review Class
May 13 Final Exam