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Utility Maximization
1.1 Problem Statement
The consumer’s problem is:

max
𝑥,𝑦

𝑥𝛼𝑦𝛽

subject to:
𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝐼
𝑥 ≥ 0, 𝑦 ≥ 0

1.2 Lagrangian Method
Set up the Lagrangian:

ℒ(𝑥, 𝑦, 𝜆) = 𝑥𝛼𝑦𝛽 + 𝜆(𝐼 − 𝑝𝑥𝑥 − 𝑝𝑦𝑦)

First-order conditions:

𝜕ℒ
𝜕𝑥 = 𝛼𝑥𝛼−1𝑦𝛽 − 𝜆𝑝𝑥 = 0 (1)

𝜕ℒ
𝜕𝑦 = 𝛽𝑥𝛼𝑦𝛽−1 − 𝜆𝑝𝑦 = 0 (2)

𝜕ℒ
𝜕𝜆 = 𝐼 − 𝑝𝑥𝑥 − 𝑝𝑦𝑦 = 0 (3)

1.3 Solving for Demand Functions
From equations (1) and (2):

𝛼𝑥𝛼−1𝑦𝛽

𝛽𝑥𝛼𝑦𝛽−1 = 𝑝𝑥
𝑝𝑦

Simplifying: 𝛼𝑦
𝛽𝑥 = 𝑝𝑥

𝑝𝑦

Solving for 𝑦:
𝑦 = 𝛽𝑝𝑥

𝛼𝑝𝑦
𝑥 (4)
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Substitute equation (4) into the budget constraint (3):

𝑝𝑥𝑥 + 𝑝𝑦 ⋅ 𝛽𝑝𝑥
𝛼𝑝𝑦

𝑥 = 𝐼

𝑝𝑥𝑥 (1 + 𝛽
𝛼) = 𝐼

𝑝𝑥𝑥 ⋅ 𝛼 + 𝛽
𝛼 = 𝐼

Solving for 𝑥:

𝑥∗(𝑝𝑥, 𝑝𝑦, 𝐼) = 𝛼𝐼
(𝛼 + 𝛽)𝑝𝑥

Substituting back into equation (4):

𝑦∗ = 𝛽𝑝𝑥
𝛼𝑝𝑦

⋅ 𝛼𝐼
(𝛼 + 𝛽)𝑝𝑥

= 𝛽𝐼
(𝛼 + 𝛽)𝑝𝑦

𝑦∗(𝑝𝑥, 𝑝𝑦, 𝐼) = 𝛽𝐼
(𝛼 + 𝛽)𝑝𝑦

1.4 Indirect Utility Function
Substitute the demand functions into the utility function:

𝑉 (𝑝𝑥, 𝑝𝑦, 𝐼) = ( 𝛼𝐼
(𝛼 + 𝛽)𝑝𝑥

)
𝛼

( 𝛽𝐼
(𝛼 + 𝛽)𝑝𝑦

)
𝛽

Simplifying:

𝑉 (𝑝𝑥, 𝑝𝑦, 𝐼) = 𝛼𝛼𝛽𝛽

(𝛼 + 𝛽)𝛼+𝛽 ⋅ 𝐼𝛼+𝛽

𝑝𝛼𝑥 𝑝𝛽
𝑦

Let 𝐾 = 𝛼𝛼𝛽𝛽

(𝛼+𝛽)𝛼+𝛽 :

𝑉 (𝑝𝑥, 𝑝𝑦, 𝐼) = 𝐾 ⋅ 𝐼𝛼+𝛽

𝑝𝛼𝑥 𝑝𝛽
𝑦
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Expenditure Minimization
2.1 Problem Statement
The dual problem is:

min
𝑥,𝑦

𝑝𝑥𝑥 + 𝑝𝑦𝑦

subject to:
𝑥𝛼𝑦𝛽 = ̄𝑈

𝑥 ≥ 0, 𝑦 ≥ 0

where ̄𝑈 is a target utility level.

2.2 Lagrangian Method
Set up the Lagrangian:

ℒ(𝑥, 𝑦, 𝜇) = 𝑝𝑥𝑥 + 𝑝𝑦𝑦 + 𝜇( ̄𝑈 − 𝑥𝛼𝑦𝛽)

First-order conditions:

𝜕ℒ
𝜕𝑥 = 𝑝𝑥 − 𝜇𝛼𝑥𝛼−1𝑦𝛽 = 0 (5)

𝜕ℒ
𝜕𝑦 = 𝑝𝑦 − 𝜇𝛽𝑥𝛼𝑦𝛽−1 = 0 (6)

𝜕ℒ
𝜕𝜇 = ̄𝑈 − 𝑥𝛼𝑦𝛽 = 0 (7)

2.3 Solving for Hicksian Demand
From equations (5) and (6):

𝑝𝑥
𝑝𝑦

= 𝜇𝛼𝑥𝛼−1𝑦𝛽

𝜇𝛽𝑥𝛼𝑦𝛽−1 = 𝛼𝑦
𝛽𝑥

Solving for 𝑦:
𝑦 = 𝛽𝑝𝑥

𝛼𝑝𝑦
𝑥 (8)

Substitute equation (8) into the utility constraint (7):

𝑥𝛼 (𝛽𝑝𝑥
𝛼𝑝𝑦

𝑥)
𝛽

= ̄𝑈

𝑥𝛼+𝛽 (𝛽𝑝𝑥
𝛼𝑝𝑦

)
𝛽

= ̄𝑈

𝑥𝛼+𝛽 = ̄𝑈 (𝛼𝑝𝑦
𝛽𝑝𝑥

)
𝛽
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𝑥 = ̄𝑈1/(𝛼+𝛽) (𝛼𝑝𝑦
𝛽𝑝𝑥

)
𝛽/(𝛼+𝛽)

Rearranging:

𝑥ℎ(𝑝𝑥, 𝑝𝑦, ̄𝑈) = (𝛼
𝛽 )

𝛽/(𝛼+𝛽)
(𝑝𝑦

𝑝𝑥
)

𝛽/(𝛼+𝛽)
̄𝑈1/(𝛼+𝛽)

Similarly, substituting back:

𝑦ℎ(𝑝𝑥, 𝑝𝑦, ̄𝑈) = (𝛽
𝛼)

𝛼/(𝛼+𝛽)
(𝑝𝑥

𝑝𝑦
)

𝛼/(𝛼+𝛽)
̄𝑈1/(𝛼+𝛽)

2.4 Expenditure Function
The expenditure function is:

𝐸(𝑝𝑥, 𝑝𝑦, ̄𝑈) = 𝑝𝑥𝑥ℎ + 𝑝𝑦𝑦ℎ

Substituting the Hicksian demands:

𝐸 = 𝑝𝑥 (𝛼
𝛽 )

𝛽/(𝛼+𝛽)
(𝑝𝑦

𝑝𝑥
)

𝛽/(𝛼+𝛽)
̄𝑈1/(𝛼+𝛽) + 𝑝𝑦 (𝛽

𝛼)
𝛼/(𝛼+𝛽)

(𝑝𝑥
𝑝𝑦

)
𝛼/(𝛼+𝛽)

̄𝑈1/(𝛼+𝛽)

Simplifying the first term:

𝑝𝑥 (𝛼
𝛽 )

𝛽/(𝛼+𝛽)
(𝑝𝑦

𝑝𝑥
)

𝛽/(𝛼+𝛽)
= (𝛼

𝛽 )
𝛽/(𝛼+𝛽)

𝑝𝛼/(𝛼+𝛽)
𝑥 𝑝𝛽/(𝛼+𝛽)

𝑦

Similarly for the second term:

𝑝𝑦 (𝛽
𝛼)

𝛼/(𝛼+𝛽)
(𝑝𝑥

𝑝𝑦
)

𝛼/(𝛼+𝛽)
= (𝛽

𝛼)
𝛼/(𝛼+𝛽)

𝑝𝛼/(𝛼+𝛽)
𝑥 𝑝𝛽/(𝛼+𝛽)

𝑦

Therefore:

𝐸 = 𝑝𝛼/(𝛼+𝛽)
𝑥 𝑝𝛽/(𝛼+𝛽)

𝑦 ̄𝑈1/(𝛼+𝛽) [(𝛼
𝛽 )

𝛽/(𝛼+𝛽)
+ (𝛽

𝛼)
𝛼/(𝛼+𝛽)

]

Let:

𝐶 = (𝛼
𝛽 )

𝛽/(𝛼+𝛽)
+ (𝛽

𝛼)
𝛼/(𝛼+𝛽)

Then:
𝐸(𝑝𝑥, 𝑝𝑦, ̄𝑈) = 𝐶 ⋅ 𝑝𝛼/(𝛼+𝛽)

𝑥 𝑝𝛽/(𝛼+𝛽)
𝑦 ̄𝑈1/(𝛼+𝛽)
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