ECON 340 Economic Research Methods

Div Bhagia

Lecture 10: Normal Distribution and Z-Score

Random Variables

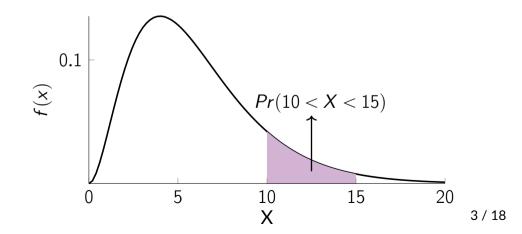
- *Random variables* take different values under different scenarios.
- Examples: outcome from a coin toss or a die roll, or number of times your wireless network fails before a deadline, etc.
- The likelihood of these scenarios is summarized by the probability distribution.
- Random variables can be *discrete* or *continuous*

Distribution of a Random Variable

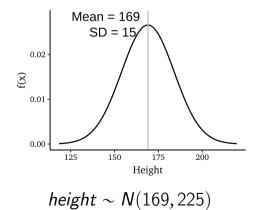
- For a discrete random variable, probability distribution given by the probability of each outcome.
- Continuous random variables summarized by the *probability density function*, where area under the curve gives us the probability of an outcome being in an interval.

Probability Density Function

The area under the curve tells us the probability of an outcome being in a particular interval.



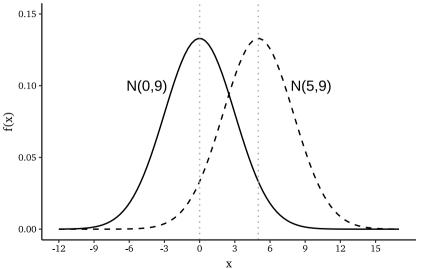
One distribution appears more than others – Normal Distribution

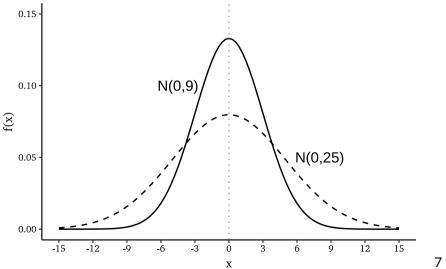


What's special about it?

- Symmetric (no skew, mean=median, bell-shaped)
- Height, birthweight, SAT scores, etc., normally distributed
- Sampling distribution approximately normal

- Normal distribution with mean μ and variance σ^2 is expressed as $N(\mu, \sigma^2)$
- So if I write X ~ N(12, 4), it means X is normally distributed with mean 12 and variance 4
- The standard normal distribution is the normal distribution with mean 0 and variance 1, denoted by *N*(0, 1)
- Random variables that have a *N*(0, 1) distribution are often denoted by *Z*





- Often interested in finding the probability that a random variable lies in a particular interval
- Cumbersome to take the integral each time
- Since the normal distribution is so commonly used, one can find these probabilities easily for the *standard normal variable*:

$$Z \sim N(0,1)$$

• We can use the standard normal probabilities to get the probabilities for any normally distributed variable

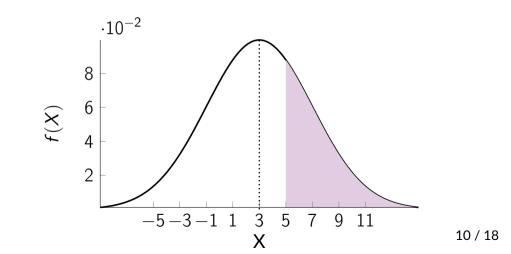
Standardized Random Variables

A random variable can be transformed into a random variable with mean 0 and variance 1 by subtracting its mean and then dividing by its standard deviation, a process called standardization.

$$Z = \frac{X - \mu_X}{\sigma_X}$$

Here, E(Z) = 0 and $\sigma_Z = 1$.

For example, say $X \sim N(3, 16)$. We want to calculate $Pr(X \ge 5)$.



Given $X \sim N(3, 16)$,

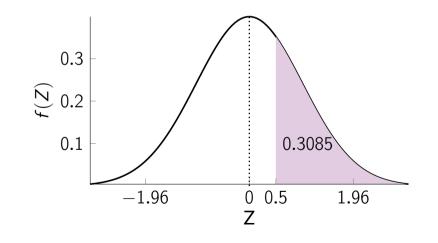
$$Z = \frac{X - \mu_X}{\sigma_X} = \frac{X - 3}{4} \sim N(0, 1)$$

Note that,

$$Pr(X \ge 5) = Pr\left(\frac{X-3}{4} \ge \frac{5-3}{4}\right) = Pr(Z \ge 0.5)$$

We can now refer to the standard normal table and find that $Pr(Z \ge 0.5)$

Find $Pr(Z \ge 0.5)$ from the standard normal table.



12 / 18

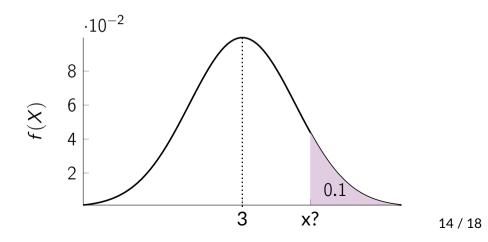
Recipe

Given $X \sim N(\mu, \sigma^2)$, general recipe to find $Pr(x_0 < X < x_1)$:

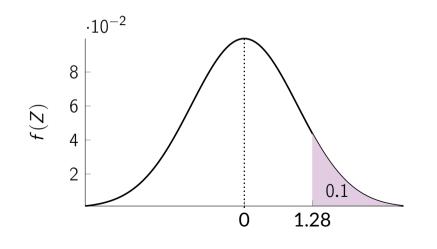
- Find $z_0 = (x_0 \mu)/\sigma$ and $z_1 = (x_1 \mu)/\sigma$
- Use standard normal table to find $Pr(z_0 < Z < z_1)$

Example. Given $X \sim N(3, 16)$, find Pr(2 < X < 5).

For example, say $X \sim N(3, 16)$ and we are given Pr(X > x) = 0.10. How to find x?



Start by finding *z*, such that Pr(Z > z) = 0.1.



Now note that,

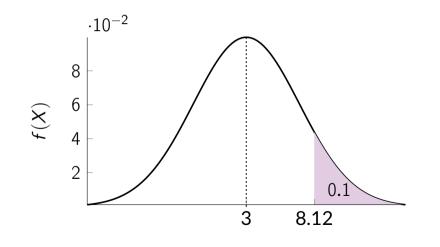
$$Z = \frac{X - \mu}{\sigma} \rightarrow X = \mu + Z.\sigma$$

We found Pr(Z > 1.28) = 0.1, we can find the corresponding x for 1.28 as follows:

$$3 + 1.28 \times 4 = 8.12$$

So we have that Pr(X > 8.12) = 0.1.

Transforming *z* back to $x = 3 + 1.28 \times 4 = 8.12$.



17 / 18

- Sometimes we are given Pr(X < x) or Pr(X > x) and we need to find *x*.
- *Example*: Given $X \sim N(3, 16)$ and Pr(X > x) = 0.10, find x.
- Start by finding z, such that Pr(Z > z) = 0.1. From the standard normal table, z = 1.28.
- Now we just need to convert *z* to *x*.

• Since
$$Z = \frac{X-\mu}{\sigma} \rightarrow X = \mu + Z.\sigma$$
, so $x = 3 + 1.28 \times 4 = 8.12$